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LETTER TO THE EDITOR 

Self-organization and phase transition in traffic-flow model of 
a two-lane roadway 

T Nagatani 
College of Engineering, Shirouka University, Hamamatsu 432, Japan 

Received 25 May I993 

Abstract. A deterministic cellular automaton model is presented to simulate the tra5c 00w 
in a twc-lane roadway. The model is an extended version of the one-dimensional asymmetric 
exclusion model to take into account the exchange of cars between the first and the second 
lanes. Using computer simulation, it is shown that the exchange of cars has an important 
effect on phase transition between the maximal velocity phase and the highdensity phase. 
The phase diagram of the phase transition is found Also, a simple mean-field theory is 
presented to analyse the traffic flow of a two-lane roadway. 

Recently, traffic problems have attracted considerable attention. Traffic simulations 
based on various hydrodynamic models have provided much insight [ l ,  21. However, 
the simulation oftraffic flow in~an entire city is a formidable task since it involves many 
degrees of freedom. Cellular automaton (CA) models a k  being used increasingly in 
simulations of complex physical systems [3,4]. In some complex systems, the cehlar 
automaton models provide only some general qualitative featuies of the system while 
in other cases useful quantitative information can be obtained. 

Very recently, Biham et a1 [SI presented a simple model which describes traffic flow 
in two dimensions. They found that a dynamical jamming transition occurs at the 
critical density p.=0.3-0.4 of- cars. The jamming transition separates the low-density 
moving phase in which all cars move and the high-density jamming phase in which all 
cars are stopped. The CA model proposed by Biham et a1 [5] is a two-dimensional 
version of the one-dimensional asymmetric exclusion model. Recently, the ID asymmet- 
ric exclusion model has been extensively studied to give an understanding of systems of 
interacting particles [6-81. The ID exclusion model is used to study the microscopic 
structure of shocks [9,10], is closely linked to growth processes [I1-13] and can also 
be formulated as traffic jam or queuing problems [14]. The I D  asymmetric exclusion 
model is one of the simplest examples of a driven diffusive system [15, 161. 

In this letter, we consider traffic flow in a two-lane roadway. We extend the ID 

asymmetric exclusion model to take into account the exchanges of cars between the first 
and the second lanes. We study the effect of interaction between the traffic flow in the 
first lane and that in the second lane on the phase transition. In our trafiic-flow model 
of a two-lane roadway, cars moving on the first (second) lane can shift to the second 
(first) lane if a car is blocked by another car. In the limit of no interaction between the 
first and second lanes, our model for traffic flow in a two-lane roadway reproduces the 
I D  asymmetric exclusion model. We consider the extension of the ID asymmetric-simple- 
exclusion process in which cars jump~at unit rate with probability 1 to a vacant neigh- 
bouring site on the up. The deterministic CA model with a periodic boundary of the I D  
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asymmetric simple-exclusion models is consistent with Wolfram's CA rule no. 184 [3,5]. 
For later convenience, we describe the ID model and present the result [5].  In one 
dimension there are cars moving along a closed ring. On every time step,, each car moves 
to the up unless it is blocked by another car. The asymptotic mean velocity (U) is 
independent of initial conditions. It is (U) = 1 for the density p<$,  while for p>f it 
decreases continuously to zero according to <U) = (1 -p)/p. There is a phase transition 
between the maximal velocity phase in which (U) = 1 and the high-density phase in 
which (U) = (1 -p)/p. 

We extend the I D  model to the model describing traffic flow in a two-lane roadway. 
Our CA model is de6ned on two onedimensional lattices of 2 x n sites with periodic 
boundary conditions. The traffic-flow model is given by a two-state CA model on the 
two onedimensional lattices which represent a two-lane roadway (figure 1). Each site 
contains either an arrow pointing to the up or empty. The arrow pointing to the up 
represents the car moving to the up. On odd time steps, in the first lane, each arrow 
moves one step to the up unless the up nearest-neighbouring site is occupied by another 
arrow. If an arrow is blocked ahead by another arrow on the first lane and its right 
nearest neighbour on the second lane is occupied, it does not move even if the blocking 
arrow moves out of the site during the same time step. If an arrow is blocked ahead by 
another arrow on the first lane and its right nearest neighbour on the second lane is 
unoccupied, it shifts to the second lane. On even time steps, in the second lane, each 
arrow moves one step to the up unless the up nearest-neighbouring site is occupied by 
another arrow. If an arrow is blocked ahead by another arrow on the second lane and 
its left nearest neighbour on the first lane is occupied, it does not move even if the 
blocking arrow moves out of the site during the same time step. If an arrow is blocked 
ahead by another arrow on the second lane and its left nearest neighbour on the first 
lane is unoccupied, it shifts to the first lane. For an illustration, figure 1 indicates the 
procedure moving cars over two time steps. In this model, the traffic problem is reduced 
to its simplest form. The essential features are maintained. These features include the 
simultaneous flow in two parallel directions of cars which cannot overlap and can shift 
between the first and second lanes. In our modcls. the total number of cars on a two- 
lane roadway is conserved. However, the total number of cars in each lane (column) is 
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Figure 2. The plots of mean velocity (U) (indicated by circles) and density (pu> (indicated 
by triangles) of the exchanged cars against the densityp,, in the cascpo., =po2. For compari- 
son, the velocity of the one-dimensional model is indicated by the solid curve. 

not conserved since the cars can shift to another lane when they are blocked ahead by 
other cars. 

We consider the simulation procedure for the CA model explained above. The initial 
densities of cars on the first and second lanes are given respectively by po,l and po,z= 
po,J where f is the fraction of cars on the second lane. Initially, cars are randomly 
distributed at the sites on the two-lane roadway with densities po,l and poz. The cars 
on the f is t  lane move ahead, shift to the second lane or stop on odd time steps according 
to the CA rules explained above. Then, on even time steps, the cars in the second lane 
move ahead, shift to the first lane or stop according to the CA rules. We have performed 
simulations of the CA model starting with an ensemble of random initial conditions 
where the system size is 2 x 1000, po,,=O.0-l.O andf=0.0-1.0. Each run is calculated 
for 4000 time steps. 

We present the simulation result obtained by the procedure explained above. First, 
we consider the traffic flow with equal densities p0., =poz cf= 1.0). Figure 2 shows the 
plot of mean velocity (U) of cars against the density p ~ . ~  of cars (mean velocity (U) 

plotted by circles). The mean velocity (U) of cars in the two-unit time interval is defined 
to he the number of cars moving successfully in the time interval divided by the total 
number of cars. The tra5ic flow shows a periodic motion after a number of time steps. 
The mean velocity ( v )  is calculated after the tra5ic flow reaches the periodic motion. 
The velocity (0) has a maximum value ( v )  = 1, indicating that no cars are ever blocked, 
while ( v )  = 0 means that all the cars are stopped and never move at all. The velocity 
of cars maintains maximal velocity ((U) = 1) until the densitypo,l reaches the transition 
point pc=0.42f0.01. All the cars in each lane move ahead without blocking. The 
velocity at the h i t  of no interaction between the lanes is shown by the solid curve in 
figure 2 where <u)=1 for pG0.5 and (v)=(l-p)/p for p>O.5. With interaction 
between the first and second lanes, the phase transition between the maximal velocity 
phase ((U)= 1) and the high-density phase ((U) < 1) occurs at  a lower densitypc=0.42 
and the velocity ( v )  of cars becomes slower than with no interaction. The density (p$  
of cars which exchange between the first and second lanes in a unit time interval is 
plotted as triangles in figure 2. Just above the transition point pc=0.42, the exchange 
of cars between lanes begins. The number of exchanged cars increases with the density 
po.l, reaches a maximum value at  PO,, mO.72 and then decreases withp0,, . We find that 
the exchange of cars between lanes has an important effect on the phase transition. 
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Figure3 Thespace-timepattern(x=ZOO, 1=1,3,5 ,..., 999)forpo.,=p0.2=0.6.Afterodd 
time steps, the 02s in the first lane are plotted by the dot. 

Figure 3 shows the space-time pattern (x  = 200 and t = 1,3,5, . . . ,999) for p0., =P,, ,~ = 
0.6 where (~)=0.3466. The cars in the first lane after odd time steps are plotted as 
dots. The pattern shows a modulated periodic behaviour. Its behaviour is due to the 
periodic exchange of cars between the iirst and second lanes. The space-time pattern is 
characteristic of the traffic flow in a two-lane roadway. 

Second, we consider the traffic flow with no cars in the second lane (poz=O). Figure 
4 s'hows the plot of the mean velocity (U) of cars against the densityp,,,, of cars (mean 
velocity (U) is plotted as circles). The velocity of cars maintains maximum velocity 
((U)= 1) until the densityp,,,, reaches the transition point p,=0.67&0.01. The phase 
transition between the maxi" velocity phase ((U) = 1) and the high-density phase 
((U) < 1) occurs at higher densitypc=0.67 than for the ID model. The velocity (U) of 
cars becomes faster than that of no second lane. The mean densitiesp,,,  and^,,^ on the 
f is t  lane before and after the exchange of cars between the 6rst and second lanes are 
plotted, respectively, by triangles and squares in figure 4. Below the transition point 
p,=O.67, the densities of cars in the first and second lanes become equivalent after 
several time steps. Above the transition point, the mean density pi in the first lane 
changes periodically on each time step. The number of exchanged cars increases with 
the initial densitypo,, . As the initial densityp,, approaches 1, most cars shift alternately 
to another lane. In the limit of Po,, = 1, all cars shift alternately to another lane. In this 

Figure 4 The plots of the mean velocity ( v )  (indicated by circles) against the densityp0,, 
forpo2=0. The mean densitiesp,,, andp,r,  in the first lane before and after the exchanges 
of cars between the first and second lanes are plotted, respectively, by triangles and squares. 
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densities p,,, (triangles) 

limit, the cars do not move but vibrate left and right. Figure 5 shows the plots of mean 
velocity (U), the mean densities and p1.0 before and after the exchange of cars 
against the initial densityp~,~ forpo,z=po.l /21f=0.5). The phase transition between the 
maximal velocity phase and the high-density phase occurs at the transition point pc= 
0.52*0.01. The number of exchanged cars, which is proportional to the difference 
pl.r-pl.o, is maintained at zero nntd the initial densitypo,l reaches the transitionp,= 
0.52. Above the transition point pc= 0.52, the number of exchanged cars increases with 
the initial density 

We show the phase diagram of the traffic flow in the two-lane roadway in figure 6, 
which indicates the relationship between the initial density in the first lane and the 
fraction f i n  the second lane (po,2=po.lf) (the transition points are plotted as full 
circles). The region on the left-hand side of the transition line represents the maximum 
velocity phase ((U)= 1). The region on the right-hand side of the transition line rep- 
resents the high-density phase ((U) < 1). The transition point increases with decreasing 
5 We fmd that the tral€ic flow on the two-lane roadway shows an interesting behaviour. 

We present a simple mean-field approach to the phase transition. We derive the 
mean velocity (U) and the density (pa> of exchanged cars. In the onedimensional 
case, the mean velocity (U) is known to be given by (U)= 1 for p 6 0 . 5  and (U)= 

Figure 6. The phase diagram for the phase transition between the maximum velocity phase 
(<u)=l)  and the highdensity phase ((u)<l). The region on the left-hand side of the 
transition line represents the maximum velocity phase. The region on the right-hand side 
of the transition line represents the high-density,phase. 
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Figwe 7. The mean velocity (U> and the density <pex) of exchanged cam obtained by the 
mean-field theory. For comparison, the velocity in the one-dimeosional model is indicated 
by the dotted line. 

( 1  - p ) / p  forp>0.5 [5]. In ow model, the number of cars on each lane changes periodi- 
cally. In the case p ~ . ~ = p ~ . ~ ,  the maximum value p- of the density in the first (or 
second) lane is approximately given by 

pmaX=p0,1+ (PeJ/2. (1) 
The mean velocity (U) is determined by the maximal density pmaX since the density on 
the fist  lane on an odd time step equals to p - .  By replacing the density in (U)= 
(1 - p ) / p  with p-  , the mean velocity (U> is given by 

( v ) = I  for pmax $0.5 

( ~ > = ( l  -Pma.)/P- for pmm> 0.5. (2) 
We calculate the mean density (p..) of exchanged cars self-consistently. The density of 
stopped cars is given by 1 - (U). Then, the mean density (peJ  of cars which can shift 
into another lane is given by the product of the density of stopped cars and the density 
of unoccupied sites : 

(p..>=(l - P o , l ) ( l - ( v ) ) .  (3) 
By solving equation (3), the density (p.,) of exchanged cars is obtained 

( P a ) = O  for p0,] G0.5 

(peX)=(l -2po.d+ (2p0.1- lV* for p0,, >0.5. (4) 
The mean velocity is obtained as 

(u)=l  for po,l G0.5 

( u > = ( l  -Po,l-  <PeX)/2)/(PO.l+ <P..)/2) for po,l > 0.5. (5) 
Figure 7 shows the plot~of the mean velocity ( 0 )  and the density ( p - )  of exchanged 
cars against the density PO.]. For comparison, the velocity (U) = (1 -p~.~)/p~.~ in the 
onedimensional model is also indicated by the dotted line. The velocity distribution 
obtained from the mean-field theory is compared with figure 2. The mean-field theory 
can explain qualitatively the mean velocity and the density of exchanged cars. However, 
quantitatively, the result of the mean-field theory is not consistent with the simulation 
result. This inconsistency is due to neglecting the space-time correlation between cars. 
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In summary, we present a deterministic cellular automaton model for the traffic flow 
in a two-lane roadway, and show that the interaction of traffic flow between the first 
and second lanes has an important effect on the phase transition. We give a simple 
mean-field theory to analyse the traffic flow of a two-lane roadway. 
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